-
Edison battery: A rechargeable battery
developed by Edison. In the charged state, the active material of the positive
electrode is nickel oxide while that of the negative electrode is metallic iron,
with a basic (potassium hydroxide) electrolyte. During discharging, the nickel
oxide is converted to a lower oxidation state oxide, while the iron is converted
to iron oxide. It is still used today.
-
Electrical current: See current.
-
Electrical double layer: The structure
of charge accumulation and charge separation that always occurs at the interface
when an electrode is immersed into an electrolyte solution. (For a simple example
see equilibrium electrode potential.) The excess charge on the electrode surface
is compensated by an accumulation of excess ions of the opposite charge in the
solution. The amount of charge is a function of the electrode potential. This
structure behaves essentially as a capacitor. There are several theoretical
models that describe the structure of the double layer. The three most commonly
used ones are the Helmholtz model, the Gouy-Chapman model, and the Gouy-Chapman-Stern
model.
-
Electrical energy: A form of energy.
It expresses the ability of an electrical source to carry out useful work or
generate heat. E.g., this energy can be used to drive an electrical motor and
carry out some mechanical work, or to generate heat with an electrical heater.
The electrical energy is usually expressed in units of watt-hour, symbol: "Wh".
See also electrical power.
-
Electrical potential: The electrical
potential difference between two point in a circuit is the cause of the flow
of a current. It is somewhat analogous to the difference in height in a waterfall
that causes the water to fall, or the difference in pressure in a pipeline that
causes the gas to flow. In electrochemistry we typically cannot measure "absolute"
potentials, only the "difference" of potential between two points. For similar
concepts, see electromotive force (emf) and voltage. These terms are sometimes
used interchangeably. However, in electrochemistry "emf" usually refers to the
potential difference between the two electrodes of an electrochemical cell when
there is no current flowing through the cell, "voltage" refers to same with
current flowing, and "potential" is usually used in connection with electrodes
(see electrode potential). The measurement unit of the potential is the volt.
-
Electrical power: The rate at which
an electrical source can supply electrical energy. E.g., a battery may be able
to store a large amount of energy, but if it has a small power capability it
can provide the energy (do some work) only slowly, and it will take a long time
to discharge. Another battery with the same energy storage capability but larger
power will provide the energy (do work) faster, but will also be discharged
faster. Electrical power is expressed usually in units of watt, symbol: "W".
Unfortunately, the terms "power" and "energy" are often used interchangeably
in everyday language (and sometimes also in the technical literature) even though
they are quite distinct concepts, e.g., when we talk about "energy source" or
"power source," we usually mean the same thing. Not only electrical sources
but also loads are characterized by a power rating, e.g., an electrical motor
or a light bulb is characterized by the power it needs to operate it. The power
of a source (or the power need of a load) can be calculated as the product of
the current and voltage (watt = ampere × volt). One watt means that one watt-second
(coulomb × volt) energy is provided (used) every second. In more practical units,
one watt means that one watt-hour (ampere-hour × volt) energy is provided (used)
every hour.
-
Electrical source (supply): A source
of electrical power (electrical energy), a device that supplies electrical current.
It can be electrochemical (battery or fuel cell) or an electromechanical device
(dynamo) or a specialized electronic instrument. Also called "power source (supply)."
Specialized sources can be called "voltage source" or "current source," indicating
the characteristic of the electrical power that can be controlled by that device.
-
Electroacoustics (electroacoustic effect):
The electrokinetic effects arising when soundwaves cause oscillation of small
particles suspended in a liquid; particularly, effect analogous to sedimentation
potential.
-
Electroactive substance: A species in
solution that can take part in an electrode reaction or that can be adsorbed
on the electrode.
-
Electroadsorption: See electrosorption.
-
Electroanalytical chemistry: The application
of electrochemical cells and electrochemical techniques for chemical analysis.
The analyte is dissolved in the electrolyte of the cell, and one can perform
either "qualitative" analysis (determination of the type of constituents present)
or "quantitative" analysis (determination of the amount of a given constituent).
-
Electrocatalysis: The phenomenon of
increasing the rate of an electrode reaction by changing the electrode material.
The rate of the electrode reactions (the magnitude of the exchange current density)
can strongly depend on the composition and morphological structure of the electrode
surface. This is called the "electrocatalytic effect."
-
Electrocatalyst: A material that can
cause electrocatalysis.
-
Electrochemical capacitor: A device
that stores electrical energy using electrochemical cells. Large surface area
electrodes are used resulting in large double layer capacitance, and much of
the storage capacity is due to the charging/discharging of the double layer.
Some surface oxidation/reduction also occurs, but in contrast to reactions occurring
in batteries, this is limited to a monolayer or two on the electrode surfaces.
Consequently, the device behaves more like a capacitor than a battery. It is
also called "supercapacitor" and "ultracapacitor". It is not to be confused
with electrolytic capacitors. Electrochemical capacitors typically have much
larger power density but much smaller energy density than batteries.
-
Electrochemical cell: A device that
converts chemical energy into electrical energy or vice versa when a chemical
reaction is occurring in the cell. Typically, it consists of two metal electrodes
immersed into an aqueous solution (electrolyte) with electrode reactions occurring
at the electrode-solution surfaces. See also galvanic cell and electrolytic
cell. It consist of two electronically conducting phases (e.g., solid or liquid
metals, semiconductors, etc) connected by an ionically conducting phase (e.g.
aqueous or non-aqueous solution, molten salt, ionically conducting solid). As
an electrical current passes, it must change from electronic current to ionic
current and back to electronic current. These changes of conduction mode are
always accompanied by oxidation/reduction reactions. An essential feature of
the electrochemical cell is that the simultaneously occurring oxidation-reduction
reactions are spatially separated. E.g., in a spontaneous "chemical reaction"
during the oxidation of hydrogen by oxygen to water, electrons are passed directly
from the hydrogen to the oxygen. In contrast, in the spontaneous electrochemical
reaction in a galvanic cell the hydrogen is oxidized at the anode by transferring
electrons to the anode and the oxygen is reduced at the cathode by accepting
electrons from the cathode. The ions produced in the electrode reactions, in
this case positive hydrogen ions and the negative hydroxyl (OH-)
ions, will recombine in the solution to form the final product of the reaction:
water. During this process the electrons are conducted from the anode to the
cathode through an outside electrical circuit where the electrical current can
drive a motor, light a light bulb, etc. The reaction can also be reversed, water
can be decomposed into hydrogen and oxygen by the application of electrical
power in an electrolytic cell.
-
Electrochemical cleaning: See electrolytic
degreasing.
-
Electrochemical degreasing: See electrolytic
degreasing.
-
Electrochemical double layer: See electrical
double layer.
-
Electrochemical drilling: See electrochemical
machining.
-
Electrochemical equivalent: The weight
of a substance (in grams) produced or consumed by the passage of one coulomb
in an electrochemical reaction. The gram-equivalent weight divided by the Faraday
constant.
-
Electrochemical grinding: A combination
of electrochemical machining and mechanical grinding. Used when the products
of electrochemical dissolution are not easily soluble and must be removed physically
from the surface. Used with a metal-bonded and diamond-impregnated grinding
wheel. Also called "electrolytic grinding" and "electrogrinding."
-
Electrochemical irreversibility: See
irreversible electrode reaction.
-
Electrochemical machining: A process
to produce metallic objects with a technique that is essentially precision electrodissolution.
The metal to be machined is made the anode in an electrolytic cell while the
cathode (or "tool") is made of inert material and is machined to be the "mirror
image" of the desired shape. A very small gap (typically, less than 0.1 cm)
is maintained between the electrodes and a large current density is applied
with a fast flowing electrolyte. One of the advantages of this production technique
is that very complicated shapes can be produced with a single operation from
very hard alloys that would be very difficult, if not impossible, to machine
with any other metal cutting technique. Some typical applications are the production
of turbine blades and the drilling of holes with very large depth-to-diameter
ratio. The cathodic reaction is typically hydrogen evolution.
-
Electrochemical nose: An instrument
which comprises a sampling system, an array of chemical/electrochemical gas
sensors with differing selectivity, and a computer with an appropriate pattern-classification
algorithm, capable of qualitative and/or quantitative analysis of simple or
complex gases, vapors, or odors. See also an Encyclopedia Article.
-
Electrochemical pickling: See electrolytic
pickling.
-
Electrochemical polishing: See electropolishing.
-
Electrochemical reaction: An oxidation/reduction
reaction that occurs in an electrochemical cell. The essential feature is that
the simultaneously occurring oxidation-reduction reactions are spatially separated.
E.g., in a spontaneous "chemical reaction" during the oxidation of hydrogen
by oxygen to water, electrons are passed directly from the hydrogen to the oxygen.
In contrast, in the spontaneous electrochemical reaction in a galvanic cell
two separate electrode reactions occur. The hydrogen is oxidized at the anode
by transferring electrons to the anode and the oxygen is reduced at the cathode
by accepting electrons from the cathode. The overall electrochemical reaction
is the sum of the two electrode reactions. The ions produced in the electrode
reactions, in this case positive hydrogen ions and the negative hydroxyl (OH-)
ions will recombine in the solution to form the final product of the reaction:
water. During this process the electrons are carried from the anode to the cathode
through an outside electrical circuit where the electronic current can drive
a motor, light a light bulb, etc. The reaction can also be reversed, water can
be decomposed into hydrogen and oxygen by the application of electrical power
in an electrolytic cell.
-
Electrochemical reversibility: See reversible
electrode reaction.
-
Electrochemical series: See electromotive
series.
-
Electrochemical shaping: A variety of
electrochemical techniques used to "shape" metal objects. These include: electrochemical
machining, electrochemical drilling, electrochemical grinding, and electropolishing.
-
Electrochemical switching: An electrochemically
switchable molecule displays a different reactivity toward some other chemical
species depending whether the switchable molecule is oxidized or reduced. Consequently,
the reactivity of the molecule can be controlled by electrochemical oxidation/reduction.
This phenomenon is primarily important in bioelectrochemistry.
-
Electrochemical synthesis: See electrosynthesis.
-
Electrochemiluminescence: Light emission
by excited species produced in an electrode reaction. Also called: "electrogenerated
chemiluminescence."
-
Electrochromatography: A "chromatographic"
separation method with the "mobile," liquid phase forced through the "immobile"
phase by the application of an electrical potential difference, that is, by
electroosmosis. In some cases, the separation is enhanced by electrophoresis.
Chromatography is an analytical (see electroanalytical) separation technique
based on the different attraction of the sample components to an immobile/stationary
phase through which the sample solution is forced through by a flow of solvent.
The sample components are adsorbed/desorbed on the surface of the stationary
phase as they are flushed through by the solvent; consequently, they move with
speeds inversely proportional to their adsorption strengths and become separated:
the least-strongly adsorbed component is flushed out first and the most-strongly
adsorbed last. A variety of stationary phases can be employed; the most common
ones are: paper, thin layer of gelatinous material, or a column (or capillary)
packed with small particles.
-
Electroclean: See electrolytic degreasing.
-
Electrocoating: See electrophoretic
deposition.
-
Electroconcentration: Process for increasing
the concentration of a trace component in a sample. It can be achieved by a
variety of techniques, e.g.: electrochromatography, electrodialysis, electroplating,
electroosmosis, and electrophoresis.
-
Electrocrystallization: See electroplating.
Electroplating typically will result in a crystalline metal deposit; therefore,
the two terms can be used interchangeably. The term "electroplating" is mostly
used in technological applications, and the term "electrocrystallization" is
often used in research studies.
-
Electrode: The two electronically conducting
parts of an electrochemical cell. See also anode and cathode. These can be simple
metallic structures (rods, sheets, etc) or much more complicated, composite
structures. E.g., the electrodes in a rechargeable battery will also "contain"
the chemicals being converted during its operation. The term "electrode" is
also used to denote complex assemblies that include an electrode in a small
vessel, which contains an electrolyte and is equipped with an ion-permeable
separator. Reference electrodes are such assemblies.
-
Electrode kinetics: The application
of kinetics to electrode reactions. Not to be confused with electrokinetics.
-
Electrode of the first kind: A simple
metal electrode immersed in a solution containing its own ion (e.g., silver
immersed in a silver nitrate solution). The equilibrium potential of this electrode
is a function of the concentration of the cation of the electrode metal in the
solution (see Nernst equation). Contrast with electrode of the second kind and
electrode of the third kind.
-
Electrode of the second kind: A metal
electrode assembly with the equilibrium potential being a function of the concentration
of an anion in the solution. Typical examples are the silver/silver-chloride
electrode and the calomel electrode. Contrast with electrode of the first kind
and electrode of the third kind. The assembly consists of a metal, in contact
with a slightly soluble salt of this metal, immersed in a solution containing
the same anion as that of the metal salt (e.g., silver---silver chloride---potassium
chloride solution). The potential of the metal is controlled by the concentration
of its cation in the solution, but this, in turn, is controlled by the anion
concentration in the solution through the solubility product of the slightly
soluble metal salt.
-
Electrode of the third kind: A metal
electrode assembly with the equilibrium potential being a function of the concentration
of a cation, other than the cation of the electrode metal, in the solution.
These have been used, with limited success, in sensors for metal ions for metals
that are not stable in aqueous solutions, e.g., calcium and magnesium. Contrast
with electrode of the first kind and electrode of the second kind. The assembly
consists of a metal in contact with two slightly soluble salts (one containing
the cation of the solid metal, the other the cation to be determined, with both
salts having a common anion) immersed in a solution containing a salt of the
second metal (e.g., zinc metal---zinc oxalate---calcium oxalate---calcium salt
solution). The potential of the metal is controlled by the concentration of
its cation in the solution, but this is controlled by the anion concentration
in the solution through the solubility product of the slightly soluble metal
salt, which, in turn is controlled by the concentration of the cation of the
second slightly soluble salt. These electrodes are very sluggish and unstable
due to a series of equilibria to be established to produce a stable potential.
-
Electrode potential: The electrical
potential difference between an electrode and a reference electrode. We cannot
measure the "absolute" potential of an electrode; therefore, the electrode potential
must always be referred to an "arbitrary zero point," defined by the potential
of the reference electrode. Consequently, it is very important always to note
the type of reference electrode used in the measurement of the electrode potential.
See also equilibrium electrode potential.
-
Electrode reaction: A chemical "half"
(or "partial") reaction occurring at the electrode surface. It is called a "half"
(or "partial") reaction because only the oxidation or the reduction part of
the overall cell reaction occurs at any one electrode. See also electrochemical
reaction. Many electrode reactions can proceed either as oxidation or as reduction,
depending on the direction of the current flowing through the electrode/electrolyte
interface. See, e.g. metal deposition/dissolution or redox reactions. An electrode
reaction always occurs in several series and parallel elementary reaction steps.
Even in the simplest case there are three steps in series: (1) the reactant
must be transported to the electrode surface from the bulk of the electrolyte
(usually predominantly by diffusion, but it can also occur by electromigration),
(2) a charge-transfer reaction occurs, and (3) the product must be transported
from the electrode surface to the bulk of the electrolyte.
-
Electrodeposition: A process for depositing
solid materials on an electrode surface using electrolysis. It is a somewhat
loosely used term that is applied to many technologies. There are a number of
metal deposition technologies. However, not only metals but also different compounds
can be electrodeposited. This is used most often for the formation of oxides
(such as manganese dioxide and lead dioxide) by anodic oxidation of dissolved
salts. Deposition can also be achieved electrophoreticly. See also an Encyclopedia
Article on electroplating.
-
Electrodics: The part (sub-discipline)
of electrochemistry that deals with phenomena occurring at the surface of electrodes,
particularly charge-transfer reactions. See also ionics.
-
Electrodissolution: The reverse reaction
of metal deposition.
-
Electrodialysis: A process to move ions
from one solution into another using an electrolytic cell. An example is the
electrochemical desalination of seawater. In its simplest form, the cell is
separated into three compartments by appropriate ion-exchange membranes with
electrodes placed in the two outer compartments, and all compartments are fed
seawater. As an electrical current is forced through the cell, anions will move
from the central compartment through an anion-exchange membrane into the anode
compartment and the cations will move through an cation-exchange membrane into
the cathode compartment. Since the ion-exchange membranes are appropriately
ion selective, the ions cannot move from the edge compartments to the central
compartment, resulting in a desalinated effluent from that compartment. In practice,
more than one cell will be connected in series, and the process will be carried
out in several stages since it would not be efficient to remove all the salt
in one step. This process is also used to remove industrial pollutants from
waste streams.
-
Electroendosmosis: See electroosmosis.
-
Electroextraction: See electrowinning.
-
Electroflotation: An electrolytic process
for particle separation. An aqueous solution containing dispersed solid particles
is electrolyzed to produce hydrogen and oxygen gas bubbles, the rising bubbles
carry particles adhering to them to the surface where they can be skimmed off.
This process is routinely used in processing minerals (ores) for separating
the light and heavy particles, and in waste treatment to remove solids.
-
Electroforming: A process to produce
metallic objects with a technique that is essentially precision electroplating.
The metal is deposited onto a "mandrel" or "former" of suitable shape to a desired
thickness, followed by the removal of the mandrel to produce a free standing
metal object. One of the advantages of this production technique is that very
complicated shapes can be produced with a single operation. It is often used
to produce very precise optical elements, and solid-state electronic devices
(integrated circuit boards, computer chips). Other applications are the production
of flat or perforated metal sheets, seamless perforated metal tubes, and metal
bellows. Two very prominent past applications of this technique were the production
of "stampers" for the old-fashioned musical (phonograph) records and "electrotypes"
for the printing industry. Practically any metal or alloy that can be electroplated
can also be used for electroforming. The preparation of the removable mandrel
is an important step in this process. One example is the use of machined copper
or brass that is surface treated to permit electroplating that will closely
follow the mandrel surface but will not permit strong adhesion of the electroformed
piece.
-
Electrogalvanizing: See galvanizing.
-
Electrogenerated chemiluminescence:
See electrochemiluminescence.
-
Electrogenerated species: A chemical
species produced at an electrode surface by a charge-transfer reaction.
-
Electrogravimetry: An electroanalytical
technique in which the substance to be determined (usually a metal) is deposited
out on an electrode which is weighed before and after the experiment. The potential
of the electrode must be carefully chosen to ensure that only the metal do be
determined will deposit. Under favorable conditions, two or more metals can
be determined by successive depositions at different potentials.
-
Electrogrinding: See electrochemical
grinding.
-
Electrokinetic effects (electrokinetics):
Phenomena that arise due to a charge separation caused by the relative motion
of a solid and liquid phase. A portion of the Gouy-Chapman diffuse layer is
sheared off as the two phases move relative to each other, resulting in a charge
separation. The hydrodynamic boundary layer remains attached to the solid surface
while the rest of the liquid moves separately; consequently, electrokinetic
effects arise when the "diffuse double layer" is thicker that the "hydrodynamic
boundary layer." The electrical potential difference between the bulk solution
and the "shear plane" is the "electrokinetic potential," often called the "zeta
potential." Two types of effects arise: an electrical potential difference will
arise between the two phases if they move relative to each other due to an external
force (streaming potential and sedimentation potential) or a movement of the
two phases will arise relative to each other if an electrical potential is applied
parallel to the phase boundary (electroosmosis and electrophoresis). Accordingly,
"electrokinetics" includes the following four "electrokinetic effects:" Streaming
potential arises when liquid is flowing by a solid surface, e.g., when liquid
is forced through a capillary tubing or porous solid by a pressure differential.
Sedimentation potential arises when small suspended particles move through a
liquid (e.g., forced by gravity). This can occur in "dispersions" (suspended
solid particles) or "emulsions" (suspended immiscible liquid droplets). Also
called "eletrophoretic potential" or "Dorn potential." Electroosmosis is the
movement of a liquid through a capillary tubing or porous solid driven by an
electrical potential difference. Also called "electroendosmosis." Electrophoresis
is the movement of small suspended particles in a liquid driven by an electrical
potential difference. This can occur in "dispersions" (suspended solid particles)
or "emulsions" (suspended immiscible liquid droplets). Also called "cataphoresis."
Electrokinetics should not be confused with electrode kinetics.
-
Electrokinetic potential: Alternative
name for "zeta potential." See electrokinetic effects.
-
Electrokinetic remediation: See electroremediation.
-
Electroless plating: Process to produce
thin metallic coatings on objects without the application of external current.
The plating bath contains a dissolved salt of the metal and a reducing agent.
However, the reduction of the metal cation to metal occurs only on the surface
of the object to be coated due to the catalytic nature of the surface. The advantages
of this process over electroplating are the possibility to produce coatings
on insulator materials, and to produce uniform thickness coatings on geometrically
complex surfaces.
-
Electrolysis: A process that decomposes
a chemical compound into its elements or produces a new compound by the action
of an electrical current. The electrical current is passed trough an electrolytic
cell and oxidation/reduction reactions occur at the electrodes. E.g., water
can be decomposed into hydrogen and oxygen, or a metal can be electroplated
by electrolysis.
-
Electrolyte: A chemical compound (salt,
acid, or base) that dissociates into electrically charged ions when dissolved
in a solvent. The resulting electrolyte (or electrolytic) solution is an ionic
conductor of electricity. Very often, the so formed solution itself is simply
called an "electrolyte." Also, molten salts and molten salt solutions are often
called "electrolyte" when used in electrochemical cells, see ionic liquid.
-
Electrolyte solution: See electrolyte.
-
Electrolytic capacitor: A storage device
similar to any other type of electrical capacitor. However, only one of its
conducting phases is a metallic plate, the other conducting phase is an electrolyte
solution. The dielectric is a very thin (passive) oxide film on the surface
of the metal (typically aluminum or tantalum) that constitutes one conducting
phase of the capacitor. There is also another metal electrode immersed in the
solution, which serves only as the electrical contact to the solution. Electrolytic
capacitors typically have much larger capacitance than classical capacitors
because the dielectric is very thin (on the order of millionth of centimeter).
There are no economical ways to produce dielectric films that thin in any other
way. The electrolytic capacitor is not to be confused with the electrochemical
capacitor. The overall capacitance of this device is the sum of two series coupled
capacitances because the metal electrical contact in the solution will have
an electrical double layer. The capacitance of the double layer is even larger
than that of the oxide covered electrode because the "dielectric" in the double
layer is only a few molecular layers of the solvent. Consequently, the overall
capacitance is dominated by the lower value of the oxide-covered electrode.
An electrochemical capacitor, depending completely on double-layer capacitance,
will have much larger capacitance than an electrolytic capacitor, however it
can be operated only in a few volts potential range because of the limitation
of the double-layer range. An electrolytic capacitor can be operated to tens
or hundreds of volts, depending on the thickness of the dielectric oxide film.
-
Electrolytic cell: An electrochemical
cell that converts electrical energy into chemical energy. The chemical reactions
do not occur "spontaneously" at the electrodes when they are connected through
an external circuit. The reaction must be forced by applying an external electrical
current. It is used to store electrical energy in chemical form, see rechargeable
battery. It is also used to decompose or produce (synthesize) new chemicals
by application of electrical power. This process is called electrolysis, e.g.,
water can be decomposed into hydrogen gas and oxygen gas.The free energy change
of the overall cell reaction is positive.
-
Electrolytic cleaning: See electrolytic
degreasing.
-
Electrolytic degreasing: Process for
removal of grease, oil, etc from metal surfaces in preparation for electroplating.
The metal is made the cathode in an electrolytic cell containing strongly basic
(sometimes hot) solution that dissolves these coatings. The strong hydrogen
evolution occurring on the cathode may reduce some of the coatings, and the
strong bubble evolution removes the coatings mechanically, while the agitation
of the solution helps the chemical dissolution of the coatings by the base.
Also called: "electrolytic cleaning," "electrochemical cleaning," "electrocleaning,"
and "electrochemical degreasing." See also degreasing.
-
Electrolytic grinding: See electrochemical
grinding.
-
Electrolytic hydrogen: See water electrolysis.
-
Electrolytic oxygen: See water electrolysis.
-
Electrolytic machining: See electrochemical
machining.
-
Electrolytic pickling: Process for removal
of oxide scales from metal surfaces in preparation for electroplating. The metal
is made the cathode in an electrolytic cell containing strongly acidic (sometimes
hot) solution that dissolves the oxide scales. The strong hydrogen evolution
occurring on the cathode may reduce some of the oxides, and the strong bubble
evolution removes the scales mechanically, while the agitation of the solution
helps the chemical dissolution of the scales by the acid. See also pickling.
-
Electrolytic polishing: See electropolishing.
-
Electrolytic refining: See electrorefining.
-
Electrolytic solution: See electrolyte.
-
Electromachining: See electrochemical
machining.
-
Electrometallurgy: Branch of metallurgy
(science dealing with the production of metals) using electrochemical processes,
that is electrowinning.
-
Electrometer: A voltmeter with very
large input resistance. A typical modern voltmeter has an input resistance of
around ten million ohms, an electrometer can have ten million times more. Electrometers
are used to measure the electromotive force of electrochemical cells that can
be easily polarized by current. The voltmeter always draws a small current,
the magnitude depends on the ratio of the resistance of the cell and the voltmeter.
High resistance cells (e.g., one containing a glass electrode, must be measured
with an electrometer.
-
Electromigration: The movement of ions
under the influence of electrical potential difference.
-
Electromotive force: The cell voltage
of a galvanic cell measured when there is no current flowing through the cell.
In other words, the equilibrium electrode potential difference between the two
electrodes of the cell. Abbreviated as "emf."
-
Electromotive series: A tabulation on
which various substances, such as metals or elements, are listed according to
their chemical reactivity or standard electrode potential. It is usually ordered
with increasing standard electrode potentials (most negative on top). For metals,
the order indicates the tendency to spontaneously reduce the ions of any other
metal below it in the series (see cementation). During electrolytic reduction
of cations (e.g., electroplating) an element lower in the series (more positive)
will deposit first, and an element higher in the series (more negative) will
deposit only when the solution is practically depleted of the ions of the first
element. Also called "electrochemical series" and "galvanic series."
-
Electron: See atomic structure.
-
Electronation: Alternative name of a
reduction process.
-
Electroneutrality condition: The expression
of nature's tendency to keep any system electrically neutral, that is, if it
contains electrically charged particles the total sum of negative charges will
be equal to the total sum of positive charges. Applying this condition to a
solution of electrolytes implies the equality of the total positive ionic charges
to the total negative ionic charges. This equality should hold even as we subdivide
the solution into smaller and smaller volume elements. This condition results
from the statistical distribution of the ions around each other considering
the attractive tendency of oppositely charged particles and the repulsive tendency
of similarly charged particles. Consequently, there is a statistical limit of
the size of the volume element to which it applies. At the extreme, a volume
small enough to contain only a single ion obviously cannot be electrically neutral.
-
Electronic conductor: A material that
conducts electricity with electrons as charge carriers.
-
Electronic nose: See electrochemical
nose.
-
Electron-transfer reaction: See charge-transfer
reaction.
-
Electroorganic: Relating to organic
electrochemistry.
-
Electroosmosis: The movement of a liquid
through a capillary tubing or porous solid driven by an electrical potential
difference. See electrokinetic effects. Also called "electroendosmosis."
-
Electroosmotic dewatering: Compaction
of slurries by electroosmosis.
-
Electroosmotic remediation: See electroremediation.
-
Electrooxidation: Oxidation carried
out with an electrochemical reaction.
-
Electropainting: Alternative name for
electrophoretic painting.
-
Electrophoresis: As a phenomenon: the
movement of small suspended particles or very large molecules in a liquid driven
by an electrical potential difference. Also called "cataphoresis." See electrokinetic
effects. As an electroanalytical technique: a separation method for very large
organic molecules (usually of biological origin) based on their different electrophoretic
velocities through an "immobilized" liquid phase. The liquid can be immobilized
by a variety of "supports", e.g.: paper, gelatinous material, capillary tubing.
-
Electrophoretic deposition (painting):
Deposition of particles carried to a surface by electrophoresis. The loosely
formed deposit layer typically needs compacting that can partially occur by
electroosmotic removal of the liquid, or by other means. Electrode reactions
occurring on the substrate surface can take part in "binding" the coating. Practical
applications are surface coating and paint deposition (practiced on large scale
in the automotive industry) and fabrication of ceramic products. Also called
"electrocoating."
-
Electrophoretic potential: Alternative
name for "sedimentation potential." See electrokinetic effects.
-
Electrophysiology: The study of the
electrical properties of living tissue.
-
Electroplating: The process that produces
a thin, metallic coating on the surface on another metal (or any other conductor,
e.g., graphite). The metal substrate to be coated is made the cathode in an
electrolytic cell where the cations of the electrolyte are the positive ions
of the metal to be coated on the surface. When a current is applied, the electrode
reaction occurring on the cathode is the reduction of the metal ions to metal.
E.g., gold ions can be discharged form a gold solution to form a thin gold coating
on a less expensive metal to produce "custome" jewelry. Similarly, chromium
coating is often applied to steel surfaces to make them more "rust resistant."
Electroplating is also used in the production of integrated circuits on computer
chips and for other modern electronic instrumentation. The anode material can
either be the metal to be deposited (in this case the electrode reaction is
electrodissolution that continuously supplies the metal ions) or the anode can
be of nonreactive material and the anodic reaction is oxygen evolution (in this
case the plating solution is eventually depleted of metal ions). Also called
"electrodeposition." See also an Encyclopedia Article.
-
Electroporation: The application of
very brief, carefully controlled, pulsed, rotating electrical fields to human
cells, a process that causes pores to open in the cell membrane and allows pharmaceuticals
or genes to gain access to the cell's interior.
-
Electropolishing: A process that produces
a bright, shiny surface on a metal. The metal is anodically dissolved in an
electrolytic cell under conditions that projections in the surface are dissolved
faster than the smoother areas.
-
Electroreduction: Reduction carried
out with an electrochemical reaction.
-
Electrorefining: An electrochemical
process that produces a purified metal from a less pure metal. The metal to
be purified is made the anode in an electrolytic cell and it is dissolved by
the application of a current into a usually acidic aqueous electrolyte or a
molten salt. At the same time, the pure metal is deposited on the cathode. The
process is carried out under conditions that most impurities will either precipitate
as "sludge" or remain dissolved in the electrolyte. Copper is one metal that
is often electrorefined in aqueous solutions, and aluminum is electrorefined
using a molten salt electrolyte. Also called "electrolytic refining" and "metal
refining."
-
Electroremediation: An electroosmotic
process for removing soluble contaminants from soil. Electrosmosis is carried
out in the wet soil with strategically placed electrodes, resulting in a movement
of the contaminants toward the electrodes thereby cleansing the soil and concentrating
the contaminants in a small volume of soil around the electrodes from where
they can be easily removed. Also called "electrokinetic remediation" "electroosmotic
remediation" and "soil remediation."
-
Electrorheology: See electroviscosity.
-
Electroseparation: A process that uses
electrolysis to selectively remove a constituent from solution.
-
Electrosorption: Adsorption at electrode
surfaces. Generally, adsorption at electrically charged interfaces.
-
Electrosynthesis: Production of chemicals
in an electrolytic cell. See also Encyclopedia Articles on electrosynthesis
of inorganic and organic compounds.
-
Electrotype: See electroforming.
-
Electroviscosity: The phenomenon of
a change in viscosity due to the presence of charge on particles suspended in
a solvent.
-
Electrowinning: An electrochemical process
that produces metals from their ores. Most metals occur in nature in oxidized
form in their ores. While numerous ways exist to reduce the ores, for many metals
electrochemical reduction is the most practical. The ore is dissolved (often
following some chemical purification or preprocessing) in an acidic aqueous
solution or in a molten salt and the resulting electrolyte solution is electrolyzed.
The metal is deposited on the cathode (either in solid or in liquid form), while
the anodic reaction is usually oxygen evolution. Copper and zinc are two metals
that are often produced by aqueous electrolysis. Aluminum, magnesium, and sodium
are some metals that can be produced by molten salt electrolysis. For aluminum,
this is the only practically used production process (see an Encyclopedia Article).
Also called "electroextraction."
-
Element, chemical: A substance that
cannot be decomposed into simpler substances by chemical means.
-
Elementary reaction step: Chemical reactions
usually take place in a number of simple ("elementary") reaction steps proceeding
in series. The overall reaction is the sum of the elementary reactions. E.g.,
the electroplating of copper on some metal involves three elementary steps:
(1) a redox reaction in which the double positively charged copper cation reacts
with an electron from the metal electrode to form a single charged copper ion,
followed by (2) a metal deposition reaction in which the single charged copper
ion reacts with a second electron to form a copper atom on the surface of the
metal, and finally (3) an electrocrystallization step in which the copper atom
becomes incorporated into the crystalline structure of the underlying metal.
The rate-determining step in copper deposition is usually the first of these
steps. Some complicated reactions can also involve parallel paths, each proceeding
through a different series of elementary steps (different reaction mechanisms).
The sum of the series elementary steps in each parallel path must add up to
the same overall reaction.
-
emf: Stands for electromotive force.
-
Energy: The energy of a system expresses
the ability of that system to do some useful work or generate heat. Energy can
be in many forms; e.g., mechanical energy, chemical energy, heat energy, electrical
energy, etc. The different forms of energy can be converted into each other.
It is a fundamental law of nature that energy can never be converted from one
form to another 100%, some of the energy is always converted into heat energy
during the conversion. Also, heat can never be converted 100% into any other
form of energy.
-
Energy conversion: A process in which
energy is converted from one of its many forms to another. The fuel cell is
an electrochemical energy conversion device.
-
Energy density: Characteristic parameter
of a battery indicating the amount of electrical energy stored per unit weight
or volume. The terminology is not strictly defined. Weight based energy density
is often called "specific energy" or "gravimetric energy density." Volume based
energy density is often called "energy density" or "volumetric energy density."
The energy density is typically expressed as watt-hour/kilogram or watt-hour/liter.
-
Energy efficiency: For a rechargeable
battery: the fraction, usually expressed as a percentage, of the electrical
energy stored in a battery by charging that is recoverable during discharging.
For an electrolytic cell: the fraction, usually expressed as a percentage, calculated
as the theoretically required energy divided by the energy actually consumed
in the process (production of a chemical, electroplating, etc). Inefficiencies
arise from current inefficiencies and the inevitable heat losses due to polarization.
See also coulometric efficiency.
-
Energy source (supply): See electrical
source (supply).
-
Energy storage: A process in which energy
is stored in some form, ready for future use on demand. The time scale of storage
can extend to many years if needed. The battery is an electrochemical energy
storage device.
-
E-nose: See electrochemical nose.
-
Equalization: The process by which all
cells of a multi-cell rechargeable battery are brought to the same state of
charge.
-
Equalizing charge: Passage
of an amount of charge by which the undercharged cells of a battery are brought
up to a fully charged condition without damaging those already fully charged.
-
Equilibrium: An electrode or an electrochemical
cell is said to be in "equilibrium" when there is no net current flowing and
there are no net electrode reactions taking place in the system. (See, however,
exchange current density.) In equilibrium, the potential of the electrodes is
the equilibrium potential and the cell voltage is the electromotive force.
-
Equilibrium cell voltage: See electromotive
force.
-
Equilibrium electrode potential: The
electrical potential of an electrode measured against a reference electrode
when there is no current flowing trough the electrode. In other words, the electromotive
force of an electrochemical cell consisting of the electrode in question and
a reference electrode. Also called: "open circuit potential (ocp)." See also
equilibrium and standard electrode potential. The concept of equilibrium potential
is probably easiest to demonstrate with a simple metal/metal-ion electrode system.
When a metal (e.g., silver) is immersed in a solution containing its ion (e.g.,
silver nitrate solution) metal ions will cross the metal/solution interface.
They will pass from the phase where the "chemical energy" of the ion is large
to the phase where the "chemical energy" of the ion is smaller. Depending on
the system, this can occur in either direction. However only the positively
charged (e.g., silver) cations can pass through the interface. The negatively
charged electrons cannot pass into the solution, and the anions (e.g., nitrate)
cannot pass into the metal. Consequently, charge accumulation occurs at the
interface forming an electrical double layer. Consider an example when the metal
ions move preferentially from the metal into the solution: the metal surface
becomes negatively charged because of the accumulation of the electrons left
behind, while the solution layer near the metal surface becomes positively charged
because of the accumulation of silver ions. This process produces a potential
difference between the two phases that will slow and eventually stop the passage
of the metal ions. At "equilibrium" the chemical driving force and the opposing
electrical force are equal. The potential difference between the metal and the
solution phases under these conditions is the "equilibrium potential difference."
This potential difference cannot be measured because there is no way to make
an electrical connection to the solution phase without setting up another electrode
potential. Consequently, electrode potentials are always measured against a
reference electrode whose potential is known on an arbitrary scale. See standard
hydrogen electrode.
-
Equilibrium potential: See equilibrium
electrode potential.
-
Equilibrium voltage: See electromotive
force.
-
Equivalent circuit: An electrical circuit
(usually comprised of series and parallel coupled resistors and capacitors)
that models the fundamental properties and behavior of electrodes or electrochemical
cells.
-
Equivalent weight: A characteristic
weight of a substance relating to a specific reaction the substance participates.
In electrochemical reactions, the molecular weight or atomic weight divided
by the number of electrons transferred during the reaction. Consequently, the
equivalent weight of a substance can be different for different reactions. E.g.
the equivalent weight of the cuprous ion (singly charged copper ion) is equal
to its atomic weight, independently whether it is oxidized to cupric ion (doubly
charged copper ion) or it is reduced to (electrically neutral) copper metal.
On the other hand, the equivalent weight of the cupric ion is one half of its
atomic weight if it is reduced to copper metal, but it is the atomic weight
if it is reduced only to cuprous ion. In a wider sense, the molecular weight
or the atomic weight divided by the valence change occurring during the reaction.
For acid/base reactions, the molecular weight divided by the number of hydrogen
ions produced or consumed during the reaction.
-
Exchange current density: At the equilibrium
potential there is no net current flowing through the electrode. However, the
equilibrium is a dynamic one, that is, the electrode reaction proceeds at "equal
rates" both in the forward and in the reverse direction, resulting in a zero
"net" reaction rate and a zero "net" current. The rate of the electrode reaction
can be expressed as an equivalent current density and the "exchange current
density" of a reaction is the current density flowing "equally" in both directions
in equilibrium. A large exchange current density indicates a fast reaction (see
also non-polarizable electrode), while a small exchange current density indicates
a slow reaction (see also polarizable electrode)
-
Expander: A substance added
in small amount to the active materials of a lead-acid battery to improve the
service life and capacity of the electrodes. In particular, an expander prevents
the increase in crystal grain size of lead in the negative electrode.
-
External electrolyte: The electrolyte
solution in the electrochemical cell into which the reference electrode is immersed.
Contrast with the internal electrolyte of the reference electrode.