As an example, suppose the drinking water supplied to animals has the following analysis. The LSI index is calculated at two temperatures: 25oC (room temperature) and 82oC (cage wash cycle). The colder incoming water will warm to room temperature in the manifolds. Residual water in the rack manifold can be heated to 82oC when the rack is in the cage washer.
Water Analysis:
LSI Formula:
LSI = pH - pHs
pHs = (9.3 + A + B) - (C + D) where:
A = (Log10[TDS] - 1)/10 = 0.15
B = -13.12 x Log10(oC + 273) + 34.55 = 2.09 at 25°C and 1.09 at 82°C
C = Log10[Ca2+ as CaCO3] - 0.4 = 1.78
D = Log10[alkalinity as CaCO3] = 1.53
Calculation at 25oC:
pHs = (9.3 + 0.15 + 2.09) - (1.78 + 1.53) = 8.2
LSI = 7.5 - 8.2 = - 0.7
Hence No Tendency to Scale
Calculation at 82oC:
pHs = (9.3 + 0.15 + 1.09) - (1.78 + 1.53) = 7.2
LSI = 7.5 - 7.2 = + 0.3
Hence Slight Tendency to Scale
See also: Calcium carbonate, Carbon dioxide, Chlorination, Dissolved oxygen, Langelier calculation, Langelier index, Larson-Skold index, Oddo-Tomson index, pH, Puckorius index, Ryznar index, Scaling Indices, Stiff-Davis index, Total dissolved solids, Water corrosivity