Connect with us

Contact us today


Hermann von Helmholtz (1821 - 1894)

Hermann Ludwig Ferdinand von HelmholtzHelmholtz was the eldest of four children and because of his delicate health was confined to home for his first seven years. His father taught him the classical languages, as well as French, English, and Italian. He also introduced him to the philosophy of Immanuel Kant and Johann Gottlieb Fichte and to the approach to nature that flowed from their philosophical insights. This "Nature philosophy," in the hands of early 19th-century investigators, became a speculative science in which it was felt that scientific conclusions could be deduced from philosophical ideas, rather than from empirical data gathered from observations of the natural world. (photo courtesy)

Much of Helmholtz' later work was devoted to refuting this point of view. His empiricism, however, was always deeply influenced by the aesthetic sensitivity passed on to him by his father, and music and painting played a large part in his science.

Helmholtz' work in electricity and magnetism revealed his conviction that classical mechanics was probably the best mode of scientific reasoning. He was one of the first German scientists to appreciate the work in electrodynamics of the British scientists Michael Faraday and James Clerk Maxwell. Faraday had appeared to strike at the foundation of Newtonian physics by his unorthodox rejection of action at a distance, that is, action between two bodies in space without alteration of the medium between them. Maxwell, however, by interpreting the mathematics of Faraday's laws, showed there was no contradiction between Newtonian physics and classical mechanics. Helmholtz further developed the mathematics of electrodynamics. He spent his last years unsuccessfully trying to reduce all of electrodynamics to a minimum set of mathematical principles, an attempt in which he had to rely increasingly on the mechanical properties of the ether thought to pervade all space.

Helmholtz was not in complete accord with Maxwell on the nature of electricity. Unlike Maxwell, Helmholtz was interested in and had studied electrochemistry, particularly the nature of the galvanic cell. Maxwell would have made the electric current solely the result of the polarization of the ether, or of whatever medium the current flowed through. Helmholtz, on the other hand, was fully conversant with Faraday's laws of electrolysis, which related the amount of current that passed through an electrochemical cell to the equivalent weights of the elements deposited at the poles. In 1881, in a lecture delivered in Faraday's honor in London, Helmholtz argued that if scientists accepted the existence of chemical atoms, as most chemists of the time did, then Faraday's laws necessarily implied the particulate nature of electricity. This hypothetical particle was soon christened the electron and, ironically, the physics of its existence helped to falsify Helmholtz' theories of electrodynamics. Though he was unsuccessful in his goal to formulate electrodynamics, Helmholtz was almost able to deduce all electromagnetic effects from the ether's supposed properties. The discovery of radio waves by his pupil Heinrich Hertz in 1888 was viewed as the experimental confirmation of the theories of Faraday, Maxwell, and Helmholtz. The special and general theories of relativity, proposed by Albert Einstein, destroyed Helmholtz' theories by eliminating the ether. (reference)