Stray currents which cause corrosion may originate from direct-current distribution lines, substations, or street railway systems, etc., and flow into a pipe system or other steel structure. Alternating currentsmay occasionally cause corrosion. The corrosion resulting from stray currents (external sources) is similar to that from galvanic cells (which generate their own current) but different remedial measures may be indicated. In the electrolyte and at the metal-electrolyte interfaces, chemical and electrical reactions occur and are the same as those in the galvanic cell; specifically, the corroding metal is again considered to be the anode from which current leaves to flow to the cathode. Soil and water characteristics affect the corrosion rate in the same manner as with galvanic-type corrosion.
However, stray current strengths may be much higher than those produced by galvanic cells and, as a consequence, corrosion may be much more rapid. Another difference between galvanic-type currents and stray currents is that the latter are more likely to operate over long distances since the anode and cathode are more likely to be remotely separated from one another. Seeking the path of least resistance, the stray current from a foreign installation may travel along a pipeline causing severe corrosion where it leaves the line. Knowing when stray currents are present becomes highly important when remedial measures are undertaken since a simple sacrificial anode system is likely to be ineffectual in preventing corrosion under such circumstances. (reference)
On the object of stray current corrosion see also: DC traction, Cathodic protection, Coating, Contour plots, Definition, Detection, Examples, External currents, Historical perspective, Impressed current, Interference, Mechanisms, Modeling. Pipeline, Potential distribution, Prevention, Stray fields and leakage, Transit systems